Determinantal point processes and random matrix theory in a nutshell
نویسنده
چکیده
3 Universality 5 3.1 Macroscopic behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.1.1 Wigner’s semicircle law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2 Microscopic behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2.1 Bulk universality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2.2 Soft-edge universality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
منابع مشابه
Loop-free Markov chains as determinantal point processes
We show that any loop-free Markov chain on a discrete space can be viewed as a determinantal point process. As an application we prove central limit theorems for the number of particles in a window for renewal processes and Markov renewal processes with Bernoulli noise. Introduction Let X be a discrete space. A (simple) random point process P on X is a probability measure on the set 2 of all su...
متن کاملNotes on Determinantal Point Processes
In these notes we review the main concepts about Determinantal Point Processes. Determinantal point processes are of considerable current interest in Probability theory and Mathematical Physics. They were first introduced by Macchi ([8]) and they arise naturally in Random Matrix theory, non-intersecting paths, certain combinatorial and stochastic growth models and representation theory of large...
متن کاملStatistics of Extreme Spasings in Determinantal Random Point Processes
Determinantal (a.k.a. fermion) random point processes were introduced in probability theory by Macchi about thirty years ago ([13], [14], [3]). In the last ten years the subject has attracted a considerable attention due to its rich connections to Random Matrix Theory, Combinatorics, Representation Theory, Random Growth Models, Number Theory and several other areas of mathematics. We refer the ...
متن کاملDeterminantal Random Point Fields
The paper contains an exposition of recent as well as sufficiently old results on determinantal random point fields . We start with some general theorems including the proofs of the necessary and sufficient condition for the existence of determinantal random point field and a criterion for the weak convergence of its the distribution. In the second section we proceed with the examples of the de...
متن کاملDifference Operators and Determinantal Point Processes
A point process is an ensemble of random locally finite point configurations in a space X. A convenient tool for dealing with point processes is provided by the correlation functions (they are similar to the moments of random variables [19]). The correlation functions are indexed by the natural numbers n = 1, 2, . . . , and the nth function depends on n variables ranging over X. A point process...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017